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I HAVE A PROBABILITY

MEASURE MODELLING

MY UNCERTAINTY,

BUT I WANT TO RO-

BUSTIFY MY MODEL. . .

WHAT CAN I DO?

WHY DO NOT

YOU USE

DISTORTION

MODELS?

DISTORTION MODELS

Assumptions:
X = {x1, . . . , xn}
P0(A) > 0 ∀A 6= ∅
δ “small enough”

P0: probability measure

δ: distortion parameter

d: distorting function

1. INGREDIENTS

Bδ
d(P0) = {P | d(P,P0) ≤ δ}

Pd(f ) = inf
{

P(f ) | P ∈ Bδ
d(P0)

}

M(Pd) = {P | P(f ) ≥ Pd(f ) ∀f }

d
co

nt
in

uo
us

an
d

co
nv

ex

2. THE MODEL 3. PARTICULAR CASES

3.1 Known IP-models

PPMM(A) = max{0, (1 + δ)P0(A) − δ}
PLV(A) = (1 − δ)P0(A) A ⊂ X

PCOR(A) =
(1−δ)P0(A)
1−δP0(A)

3.2 Distance-based models

PTV(A) = max{0,P0(A) − δ} A ⊂ X

3.3 Vertical barrier models

PVB(A) = max{bP0(A) + a, 0} a ≤ 0, b > 0
a + b ∈ [0, 1]

3.4 Increasing transformations

P(A) = g(P0(A))
g : [0, 1] → [0, 1] increasing

g(0) = 0, g(1) = 1
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BUT IF YOU

USE A DIS-

TANCE. . .

WHY DO NOT YOU

CONSIDER THE EU-

CLIDEAN DISTANCE?

YOU ARE

RIGHT. . .

5. Example

P0 = (0.5, 0.3, 0.2)

δ = 0.1

EUCLIDEAN MODEL

1. Euclidean distance

dE(P,P0) =
√∑n

i=1(pi − p0
i )

2

dE continuous and convex

2. Lower prevision

f =
n∑

i=1

aiIxi

f = 1
n

n∑
i=1

ai

S2
f = 1

n

n∑
i=1

(
ai − f

)2
PE(f ) = P0(f ) − δ

√
nSf

3. Lower probability

PE(A) = P0(A) − δ

√
|A|(n−|A|)

n A ⊂ X

4. Properties

1) PE is not 2-monotone. . .
2) . . . but it is 2-monotone on events
3) the model is not preserved under conditioning
4) extreme points:

ext
(
Bδ

E(P0)
)
= {P | dE(P,P0) = δ}
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BUT FOR COM-

PARING PROB-

ABILITIES. . .

WOULDN’T IT BE

BETTER TO USE

A DIVERGENCE?

NICE POINT. . .

KULLBACK-LEIBLER MODEL

5. Example

P0 = (0.5, 0.3, 0.2)

δ = 0.1

1. KL-divergence

DKL(P,P0) =
∑n

i=1 pi log
(

pi
p0

i

)
DKL continuous and convex

2. Lower prevision

f =
n∑

i=1

aiIxi

PKL(f ) = min
α1,...,αn

n∑
i=1

aiαip0
i

subject to
n∑

i=1

αip0
i = 1,

n∑
i=1

αip0
i log(αi) = δ

3. Lower probability

PKL(A) = αP0(A)

where α ∈ [0, 1] is the unique solution of
αP0(A) log(α) +

(
1 − αP0(A)

)
log

(
1−αP0(A)
1−P0(A)

)
= δ

4. Properties

1) PKL is not 2-monotone. . .
2) . . . but it is 2-monotone on events
3) the model is not preserved under conditioning
4) extreme points:

ext
(
Bδ

KL(P0)
)
= {P | DKL(P,P0) = δ}
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AMONG ALL

THE MODELS. . .

WHICH ONE

SHOULD i USE?

IT DEPENDS

ON WHAT YOU

ARE LOOK-

ING FOR. . .

COMPARISON
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Euclidean-model. . .
. . . on gambles 7 7 7 7

. . . on events 3 7 7 7

KL-model. . .
. . . on gambles 7 7 7 7

. . . on events 3 7 7 7

PMM 3 7 3 3

LV 3 3 3 3

COR. . .
. . . on gambles 7 7 7 3

. . . on events 3 3 7 3

TV 3 7 3 3

Vertical Barrier models 3 7 7 3

1. Properties 2. Amount of imprecision 3. Example
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DOES ANYBODY

CARE ABOUT DIS-

TORTION MODELS ? MANY

PEOPLE !
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