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Bayes’ update is not always possible

Bayes’ rule P(A | E ) = P(A∩E)
P(E) = P(E |A)P(A)

P(E) is arguably the most
common updating rule for subjective beliefs

Its use presupposes that both P(E ) and P(A ∩ E ) have been
quantified before event E takes place

Can be a very challenging task, for instance when E is not anticipated
Jeffrey (1957, 1965, 1968)

Evidence is not always propositional (i.e. it may not be possible to
represent it as a crisp subset)

It is oftentimes uncertain or partial
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Jeffrey’s rule of updating

P⋆(A) =
∑

Ej∈E P(A | Ej)P
⋆(Ej) is known as Jeffrey’s rule of

conditioning

Valid when there is a partition E of Ω such that
P⋆(A | Ej) = P(A | Ej), for all A,Ej

Useful when new evidence cannot be identified with the occurrence of
an event, but changes the probabilities assigned to the events in E
Reduces the assessment of P⋆ to the simpler task of assessing P⋆(Ej)

Generalizes Bayes’ rule
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Motivation

Subjectively assessing P⋆(Ej), for all Ej , can be a psychologically and
mathematically daunting task

We propose Dynamic Probability Kinematics (DPK) that mechanizes
Jeffrey’s rule in the presence of observed data

DPK sits in between Bayes’ and Jeffrey’s rules

While it is built as a particular case of PK, it uses the empirical
distribution to assign probabilities to the elements of the partition E
To mechanize the procedure, it gives up the freedom of choosing the
probability the agent feels correct to assign to the elements of E
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DPK properties

We study the properties of DPK rule

Convergence
Lack of commutativity
Properties of successive partitions as more data are observed
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Dynamic Imprecise Probability Kinematics

We generalize DPK to deal with the agent facing ambiguity Ellsberg
(1961); Gilboa and Marinacci (2013)

We call this generalization Dynamic Imprecise Probability Kinematics
(DIPK)

We study the convergence property of the DIPK rule
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DPK/DIPK examples

We give examples to show how to update subjective beliefs according
to DPK and DIPK

L W

D

Pℰ0
(L) = 0.21

Pℰ0(L) = 0.31
Pℰ0

(W ) = 0.27

Pℰ0(W ) = 0.52

Pℰ0
(D) = 0.27

Pℰ0(D) = 0.52

Pℰ1
(W ) ≈ 0.251

Pℰ1(W ) ≈ 0.482Pℰ1(D) ≈ 0.482

Pℰ1
(D) ≈ 0.251

Pℰ1(L) ≈ 0.308
Pℰ1

(L) ≈ 0.267
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Carthago delenda est

COME TO THE POSTER FOR MORE!
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