Dynamic Precise and Imprecise Probability Kinematics

Michele Caprio and Ruobin Gong

PRECISE Center, Dept. of Computer and Information Science, University of Pennsylvania Dept. of Statistics, Rutgers University

Universidad de Oviedo

DPK & DIPK

Bayes' rule P(A | E) = P(A∩E) / P(E) = P(E|A)P(A) / P(E) / P(E) is arguably the most common updating rule for subjective beliefs

- Bayes' rule $P(A | E) = \frac{P(A \cap E)}{P(E)} = \frac{P(E|A)P(A)}{P(E)}$ is arguably the most common updating rule for subjective beliefs
- Its use presupposes that both P(E) and P(A ∩ E) have been quantified before event E takes place
 - Can be a very challenging task, for instance when *E* is not anticipated Jeffrey (1957, 1965, 1968)

- Bayes' rule $P(A | E) = \frac{P(A \cap E)}{P(E)} = \frac{P(E|A)P(A)}{P(E)}$ is arguably the most common updating rule for subjective beliefs
- Its use presupposes that both P(E) and P(A ∩ E) have been quantified before event E takes place
 - Can be a very challenging task, for instance when *E* is not anticipated Jeffrey (1957, 1965, 1968)
- Evidence is not always propositional (i.e. it may not be possible to represent it as a crisp subset)
 - It is oftentimes uncertain or partial

P^{*}(A) = ∑_{E_j∈E} P(A | E_j)P^{*}(E_j) is known as Jeffrey's rule of conditioning

- P^{*}(A) = ∑_{E_j∈E} P(A | E_j)P^{*}(E_j) is known as Jeffrey's rule of conditioning
- Valid when there is a partition \mathcal{E} of Ω such that $P^{\star}(A \mid E_j) = P(A \mid E_j)$, for all A, E_j
- Useful when new evidence cannot be identified with the occurrence of an event, but changes the probabilities assigned to the events in ${\cal E}$
- Reduces the assessment of P^* to the simpler task of assessing $P^*(E_j)$

- P^{*}(A) = ∑_{E_j∈E} P(A | E_j)P^{*}(E_j) is known as Jeffrey's rule of conditioning
- Valid when there is a partition \mathcal{E} of Ω such that $P^{\star}(A \mid E_j) = P(A \mid E_j)$, for all A, E_j
- Useful when new evidence cannot be identified with the occurrence of an event, but changes the probabilities assigned to the events in ${\cal E}$
- Reduces the assessment of P^* to the simpler task of assessing $P^*(E_j)$
- Generalizes Bayes' rule

- Subjectively assessing $P^{\star}(E_j)$, for all E_j , can be a psychologically and mathematically daunting task
- We propose Dynamic Probability Kinematics (DPK) that mechanizes Jeffrey's rule in the presence of observed data

- Subjectively assessing P^{*}(E_j), for all E_j, can be a psychologically and mathematically daunting task
- We propose Dynamic Probability Kinematics (DPK) that mechanizes Jeffrey's rule in the presence of observed data
- DPK sits in between Bayes' and Jeffrey's rules

- Subjectively assessing $P^{\star}(E_j)$, for all E_j , can be a psychologically and mathematically daunting task
- We propose Dynamic Probability Kinematics (DPK) that mechanizes Jeffrey's rule in the presence of observed data
- DPK sits in between Bayes' and Jeffrey's rules
 - While it is built as a particular case of PK, it uses the empirical distribution to assign probabilities to the elements of the partition $\mathcal E$
 - To mechanize the procedure, it gives up the freedom of choosing the probability the agent feels correct to assign to the elements of ${\cal E}$

• We study the properties of DPK rule

三日 のへの

- We study the properties of DPK rule
 - Convergence

三日 のへの

• We study the properties of DPK rule

- Convergence
- Lack of commutativity

э

三日 のへの

• We study the properties of DPK rule

- Convergence
- Lack of commutativity
- Properties of successive partitions as more data are observed

3 5

- We generalize DPK to deal with the agent facing ambiguity Ellsberg (1961); Gilboa and Marinacci (2013)
 - We call this generalization Dynamic Imprecise Probability Kinematics (DIPK)

- We generalize DPK to deal with the agent facing ambiguity Ellsberg (1961); Gilboa and Marinacci (2013)
 - We call this generalization Dynamic Imprecise Probability Kinematics (DIPK)
- We study the convergence property of the DIPK rule

DPK/DIPK examples

• We give examples to show how to update subjective beliefs according to DPK and DIPK

315

DPK/DIPK examples

 We give examples to show how to update subjective beliefs according to DPK and DIPK

三日 のへの

Carthago delenda est

COME TO THE POSTER FOR MORE!

Caprio & Gong (UPenn and Rutgers)

DPK & DIPK

July 11, 2023

6/6

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

- Daniel Ellsberg. Risk, ambiguity, and the Savage axioms. The Quarterly Journal of Economics, 75(4):643–669, 1961.
- Itzhak Gilboa and Massimo Marinacci. Ambiguity and the Bayesian paradigm. In Daron Acemoglu, Manuel Arellano, and Eddie Dekel, editors. Advances in Economics and Econometrics. Tenth World *Congress*, volume 1. Cambridge : Cambridge University Press, 2013.
- Richard C. Jeffrey. Contributions to the Theory of Inductive Probability. PhD Thesis, Princeton University, Dept. of Philosophy, 1957.
- Richard C. Jeffrey. The Logic of Decision. Chicago : University of Chicago Press, 1965.
- Richard C. Jeffrey. Probable knowledge. In Imre Lakatos, editor, The Problem of Inductive Logic, volume 51 of Studies in Logic and the Foundations of Mathematics, pages 166 – 190. Elsevier, 1968.