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The problem

Rota’s Fubini lectures
In his 1998 Fubini Lectures, Rota discusses twelve problems in probability
that no one likes to bring up.

G–C. Rota, Twelve problems in probability no one likes to bring up, in: The
Fubini Lectures, Torino, 3-5 June, 1998, in: H. Crapo, D. Senato (Eds.),
Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota,
Springer, Milan, 2001, pp.57–93

The first problem

I will lay my cards on the table: a revision of the notion of a sample space
is my ultimate concern.

[...]
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The problem

[...]
Pointless probability deals with an abstract Boolean σ-algebra Π and

with a real-valued function defined on Π which imitates the definition of
probability. The problem is to define an algebra of random variables. The
setup is not as artificial as it may appear. Among probabilists, mention of

sample points in an argument has always been bad form. A fully
probabilistic argument must be pointless.

Nelson’s point of view
Addition and multiplication are the bare minimum needed for any
algebraic approach to probability theory!

E. Nelson, Radically elementary probability theory, Ann. Math. Stud. 117
(1987).
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An Answer using Boolean algebras
By Stone duality every boolean algebra A is an algebra of continuous
{0, 1}-valued random variables, or yes-no events, defined over the
maximal spectral space Max (A).

Using (AF) C∗-algebras, Boolean algebras have a hidden ring-theoretic
structure, as advocated by E. Nelson.

Furthermore, via de Finetti’s Dutch book theorem, a (logical-)algebraic
definition of probability can be given on Boolean algebras.

The limitation
The measures that can be considered when dealing with Boolean algebras
are only defined on the Borel sets of the totally disconnected compact
Hausdorff space Max (A).

This excludes too many measure spaces that are of interest for
probabilists!
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An Answer for continuous random variables - D. Mundici

MV-algebras are a generalization of Boolean algebras that were defined
as the algebraic semantics for the infinite valued Łukasiewicz logic.

Once again, using (AF) C∗-algebras, Boolean algebras have a hidden
ring-theoretic structure, as advocated by E. Nelson.

Furthermore, D. Mundici showed in a series of papers how to define a
notion of algebraic probability measure on MV-algebras and how to
extend de Finetti’s Dutch book theorem.

Indeed the closed compact set S(A) ⊆ [0, 1]A of finitely additive
probability measures(=states) on A coincides with the set of [0, 1]-valued
functions on A whose finite restrictions are coherent à la de Finetti’s.
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An Answer for continuous random variables - D. Mundici

Theorem (Mundici, 2021)
For every Kolmogorov probability space (Ω,BO(Ω),P), with BO(Ω) the
σ-algebra of Borel sets of a compact Hausdorff space Ω, and P a regular
probability measure on BO(Ω), there is an MV-algebra A and a state
s ∈ S(A) such that

(Ω,BO(Ω),P) ' (Max (A) ,BO(Max (A)), s).

D. Mundici, Rota’s Fubini lectures: The first problem, Advances in
Applied Mathematics, 125: 102153, 2021.

S. Lapenta (UNISA) Pointfree Measurability 6/11



How to go beyond continuity to measurable functions

MV-algebras closed under scalar operation and countable suprema,
endowed with σ-homomorphisms of Riesz MV-algebras.

This are an infinitary variety called RMVσ and we can think of them as
algebras of continuous functions, closed under countable suprema. Indeed,

A ∈ RMVσ ⇔ A = C (X ),

where X is a basically disconnected compact Hausdorff space and
functions in C (X ) are continuous are [0, 1]-valued.

Free algebras in RMVσ have been characterized as algebras of
measurable functions. If κ ≤ ω, then the free κ-generated algebra in
RMVσ is the algebra of all Borel measurable functions Borel([0, 1]κ).
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A privileged subclass

An algebra A ∈ RMVσ is σ-semisimple if, and only if, A ∈ ISP([0, 1]).

If B is any σ-algebra on any set B ,

Meas(B, [0, 1]) = {f : B → [0, 1] | f is a measurable function},

where we take the unit interval endowed with the σ-algebra of its Borel
subsets.

Theorem (Di Nola, L., Lenzi)
A σ-complete Riesz MV-algebra A is isomorphic to a Riesz MV-algebra of
the form Meas(B, [0, 1]) if and only if A is σ-semisimple.

S. Lapenta (UNISA) Pointfree Measurability 8/11



A privileged subclass

An algebra A ∈ RMVσ is σ-semisimple if, and only if, A ∈ ISP([0, 1]).

If B is any σ-algebra on any set B ,

Meas(B, [0, 1]) = {f : B → [0, 1] | f is a measurable function},

where we take the unit interval endowed with the σ-algebra of its Borel
subsets.

Theorem (Di Nola, L., Lenzi)
A σ-complete Riesz MV-algebra A is isomorphic to a Riesz MV-algebra of
the form Meas(B, [0, 1]) if and only if A is σ-semisimple.

S. Lapenta (UNISA) Pointfree Measurability 8/11



A privileged subclass

An algebra A ∈ RMVσ is σ-semisimple if, and only if, A ∈ ISP([0, 1]).

If B is any σ-algebra on any set B ,

Meas(B, [0, 1]) = {f : B → [0, 1] | f is a measurable function},

where we take the unit interval endowed with the σ-algebra of its Borel
subsets.

Theorem (Di Nola, L., Lenzi)
A σ-complete Riesz MV-algebra A is isomorphic to a Riesz MV-algebra of
the form Meas(B, [0, 1]) if and only if A is σ-semisimple.

S. Lapenta (UNISA) Pointfree Measurability 8/11



Why this setting?

Classical probability Non-classical probability
probability measure state
σ-algebra of events

algebra in RMVσ

event E (or χE )

function f ∈ Borel([0, 1]κ)

random variable

?

Classical vs Generalized Random Variables
We argue that in this algebraic framework we can at the same time
answer to Rota’s problem and generalize random variables.

Di Nola A., Dvurečenskij A., Lapenta S., An approach to stochastic
processes via non-classical logic, Annals of Pure and Applied Logic
172(9) 2021.
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On Rota’s problem
Mundici proved that moving from Boolean Algebras to (certain)
MV-algebras, allows to describe algebraically all continuous random
variables on compact Hausdorff spaces.

Moving from (certain) MV-algebras to σ-continuous Riesz MV-algebras it
seems, at first, that one is restricting again to certain compact Hausdorff
space.

But, restricting to σ-semisimple algebras we are able to describe all
measurable functions f : (B,B)→ ([0, 1],BO([0, 1]).

In the paper we also show how we take this answer to Rota’s problem a
step further, and translate all results in the language of frames and
category theory.

We also tackle the notion of logico-algebraic statistical model in this new
framework.
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Thank you!

S. Lapenta (UNISA) Pointfree Measurability 11/11


