Fiducial inference viewed through a possibility-theoretic inferential model lens

Ryan Martin¹ North Carolina State University Researchers.One www4.stat.ncsu.edu/~rgmarti3

> ISIPTA'23 Oviedo, Spain July 11th 2023

¹Research partially supported by the NSF, SES-2051225

Statisticians want numerical measures of the degree to which data support hypotheses. —Hacking

- Most options consider only precise probabilities, e.g.,
 - Bayesian
 - fiducial
- Fiducial is often (unfairly) called "Fisher's biggest blunder"
- Despite its failures, fiducial still had a major impact:
 - Neyman's confidence sets
 - Dempster's theory ~→ imprecise probability

- Also: there are cases where fiducial works great
- So, if another method is to work well, then it shouldn't be totally different from fiducial
- In particular, my *inferential model* (IM) framework
 - takes the form of a data-dependent possibility distribution
 - is provably valid in general, i.e., it always works
- Connection between IMs and fiducial?
- Main result: in a class of problems where fiducial works, its "posterior" is a maximal member of the IM's credal set

- Data $X \in \mathbb{X}$, observed value x
- Model $\{\mathsf{P}_{\theta} : \theta \in \mathbb{T}\}$, e.g., $\mathsf{Bin}(n, \theta)$
- Uncertain true value is Θ , generic values denoted by θ
- Assume no prior info about Θ is available²
- **D**ata + model \implies likelihood: $\theta \mapsto L_x(\theta)$
- **Goal:** reliably quantify uncertainty about Θ , given X = x

²This was the case Fisher and many other statisticians consider

Inferential models (IMs)

- IMs deal with imprecise probabilities³
- Vacuous prior info about $\Theta \Rightarrow IM$'s possibility contour is

 $\pi_{x}(\theta) = \mathsf{P}_{\theta}\{R(X,\theta) \leq R(x,\theta)\}$

where $R(x, \theta) = L_x(\theta) / \sup_{\vartheta} L_x(\vartheta)$, relative likelihood Upper probability⁴ defined via optimization

$$\overline{\Pi}_{x}(A) = \sup_{\theta \in A} \pi_{x}(\theta), \quad A \subseteq \mathbb{T}$$

• Magnitudes of $\overline{\Pi}_{x}(\cdot)$ used for drawing inferences

³Modern version is possibility-theoretic (M., arXiv:2211.14567) 4 Lower probability Π_{v} defined via conjugacy

Validity theorem.

The IM above is (strongly) valid, i.e.,

$$\sup_{\Theta} \mathsf{P}_{\Theta} \{ \pi_{X}(\Theta) \leq \alpha \} \leq \alpha, \quad \alpha \in [0, 1]$$

Basic validity result,⁵ familiar for p-values
Important consequences wrt reliable possibilistic UQ
tests have exact Type I error rate control⁶
exact confidence sets, i.e., if C_α(x) = {θ : π_x(θ) > α}, then

$$\sup_{\Theta} \mathsf{P}_{\Theta} \{ \mathcal{C}_{\alpha}(X) \not\ni \Theta \} \leq \alpha, \quad \alpha \in [0,1]$$

⁵Generalizations to "partial prior info" in M., arXiv:2211.14567 ⁶ "Uniform" error control in Cella and M., arXiv:2304.05740

- Fiducial argument works when the model has more structure
- I mean a group invariance structure:
 - group $\mathcal G$ of transformations acting on $\mathbb X$ (and on $\mathbb T$)
 - \blacksquare roughly, model is invariant wrt to ${\mathcal G}$ if

 $\mathsf{P}_{ heta}(gX\in \cdot)=\mathsf{P}_{g heta}(X\in \cdot), \quad heta\in\mathbb{T}, \quad g\in\mathcal{G}$

- e.g., location-scale models & affine transformations
- The following results are "well-known"
 - the fiducial and default-prior Bayes solutions are the same
 - Bayes solution uses the right invariant Haar prior
 - both solutions give exact confidence sets

IM and fiducial connection

• IM's credal set: $\mathscr{C}(\overline{\Pi}_x) = \{ \mathsf{Q}_x \in \mathsf{probs}(\mathbb{T}) : \mathsf{Q}_x(\cdot) \leq \overline{\Pi}_x(\cdot) \}$

Well-known characterization

$$\mathsf{Q}_{x} \in \mathscr{C}(\overline{\mathsf{\Pi}}_{x}) \iff \mathsf{Q}_{x}\{\pi_{x}(\Theta) \leq \alpha\} \leq \alpha, \quad \alpha \in [0,1]$$

"Maximal" member Q^{*}_x satisfies

$$\mathsf{Q}_{x}^{\star}\{\pi_{x}(\Theta) \leq \alpha\} = \alpha, \quad \alpha \in [0, 1]$$

Theorem (M., arXiv:2303.08630).

For an invariant statistical model as described in the paper:

- IM's credal set has a maximal member
- it corresponds to the fiducial distribution
- in particular, the IM and fiducial confidence sets are the same

Example

- Directional data, i.e., angles or points on a circle
- Simple von Mises model with unknown mean direction Θ
- Group structure: Θ plays the role of a rotation
- Plots show data,⁷ fiducial density, and IM contour⁸

⁷From Example 1 in Mardia's *Directional Statistics* ⁸Details in M., arXiv:2303.08630

- New connection between fiducial and IMs
- Explains why fiducial sometimes works
 - IM always works
 - fiducial works when it agrees with the IM
- Also explains why fiducial doesn't always work
 - marginalization via different calculus
 - fiducial–IM connection isn't preserved under marginalization
- More details in the paper, we can talk during poster session

https://wordpress-courses2223.wolfware.ncsu.edu/ st-790-001-fall-2022/

Valid and efficient imprecise-probabilistic inference with partial priors, II. General framework

Ryan Martin^{*}

https://arxiv.org/abs/2211.14567