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Pseudo-Label Selection ...

Consider labeled data D = {(xi, yi)}n
i=1 ∈ (X × Y)n and unlabeled data

U = {(xi,Y)i}
m
i=n+1 ∈

(
X × 2Y

)m−n
, from the same data generation process (m > n).

Standard Pseudo-Labeling (other names: Self-Training, Self-Labeling)
Data: D,U
Result: fitted model ŷ∗(x)
while stopping criterion not met do

fit model on labeled data D to obtain prediction function ŷ(x)
for i ∈ {1, . . . , |U|} do

predict Y ∋ ŷi = ŷ(xi) with xi from (xi,Y)i in U
compute some selection criterion c(xi, ŷi)

end
obtain i∗ = arg maxi c(xi, ŷi)
add (xi∗, ŷi∗) to labeled data: D ← D ∪ (xi, ŷi)
update U ← U \ (xi,Y)i

end
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... Is a Decision Problem ...

(A, Θ, u(·)) is a decision-theoretic triple with states of nature θ ∈ Θ, action space A,
and a utility function u : A× Θ→ R. Here:
• (Compact) parameter space Θ as states of nature
• Action space AU = {(z,Y) | ∃ i ∈ {n + 1, . . . , m} : (z,Y) = (xi,Y)i ∈ U}, i.e.,

instances as actions AU ∋ a = (z,Y)
• Given D and the prediction functional ŷ : X → Y , we define the utility

u : AU × Θ→ R
((z,Y), θ) 7→ u((z,Y), θ) = p(D ∪ (z, ŷ(z)) | θ, M),

which is said to be the pseudo-label likelihood. In the following, for ease of exposition,
we will write ℓ(i) := p(i | θ, M) := p(D ∪ (xi, ŷ(xi)) | θ, M).

... With Bayes-Optimal Actions [6] ...

Proposition 1 (Bayes-actions in PLS [6]). In the decision problem above (AU , Θ, u(·)),
using the pseudo-label likelihood as utility function and an updated prior (i.e., pos-
terior) π(θ) = p(θ | D) on Θ, the standard Bayes criterion Φ(·, π) : U → R; a 7→
Φ(a, π) = Eπ(u(a, θ)) corresponds to the pseudo posterior predictive p(D∪(xi, ŷi) | D).

... that can be robustified [7] ...

... Not Using Second-Order information ... Using Second-Order Information

Regret-based
Updating Rule

Problem: Confirmation Bias
• By design, PLS relies on initial model fit

– If the initial model generalizes
poorly, initial misconceptions can
propagate throughout the process [1]

– This can be due to model misspec-
ification and erroneous label predic-
tions

• Accordingly, we strive for a PLS crite-
rion that is robust with respect to these
regrets

We adapt the α-cut updating rule by [2] s.t.
the posterior credal set is

Πα = {π ∈ Π | m(ℓh,h, π) ≥ α·sup
j,k

m(ℓj,k, π)}

with Π a prior credal set, j ∈ {1, . . . , J} for
J = |Y| labels, and k ∈ {1, . . . , K} for mod-
els M1, . . . , MK. Denote by ũj,k(θ, a∗) the
utility of a∗=̂ i∗ with prediction ỹi∗,j under
model Mk. Defining r(θ, a∗) = supj,k ũj,k(θ,a∗)

ũh,h(θ,a∗)
as the myopic regret, we get
Proposition 2 (Myopic Regret-Guarantee
of α-Cuts). Bayes-optimal selections a∗ of
pseudo-labeled data under the above α-cut
updating rule have expected total regret
Eπ(r(θ, a∗)) ≤ 1

α for any posterior π ∈ Πα.

Gen. Stochastic
Dominance

Problem: Weakly Structured Info

Embed the multi-model-utility into a prefer-
ence system A ([4]). This allows to
• harness the entire information en-

coded in its cardinal dimensions
while still being able to
• avoid unjustified assumptions on the

hierarchy of the involved models.
Denote by NA the set of all representations
ϕ of A and define a preorder on the pseudo-
labeled data AU by setting a1 ≿π a2 iff
∀ϕ : Eπ(ϕ ◦ u(a1, ·)) ≥ Eπ(ϕ ◦ u(a2, ·))

Select all pseudo-labeled data in AU that are
undominated w.r.t. ≿π (compare also [5]).

Good News: Under credal prior info Π we
can generalize ≿π to ≿Π by setting

a1 ≿Π a2 : iff ∀π ∈ Π : a1 ≿π a2

and select all pseudo-labeled data in AU that
are undominated w.r.t. ≿Π.

The relations ≿π and ≿Π are referred to as
Generalized Stochastic Dominance
(GSD).

Multi-Model
Utility

Problem: Model Selection for PLS

Consider M1, . . . , MK, K < ∞, different
parametric models specified on respective
parameter spaces Θ1, . . . , ΘK. Denote by
Θ̃ = ×K

k=1Θk their Cartesian product and
by fk : Θ̃→ Θk, k ∈ {1, . . . , K} the projec-
tions from the Cartesian product to each Θk.
Consider D and pseudo-labels ŷ ∈ Y from
ŷ : X → Y as given. The K-dimensional
utility function

um : AU × Θ̃→ RK

((xi,Y)i, θ) 7→ (ℓ(i, 1), . . . , ℓ(i, K))′

shall be called multi-model likelihood, where
we write ℓ(i, k) = p(i | fk(θ), Mk) = p(D ∪
(z, ŷ(z)) | fk(θ), Mk) with fk(θ) = θk the
parameter vector of model k.

Reversed
Occam’s Razor

Nested Case: Consider again
M1, . . . , MK, K < ∞. Now let them
be nested with Θ1 ⊆ Θ2 ⊆ · · · ⊆ ΘK,
such that the same parameters in different
models refer to the same covariates. Based
on the multi-model likelihood utitliy above,
we introduce a thresholding Bayes criterion
Φτ,ξ,π : AU → R; a 7→

Φτ,ξ,π(a) =


0, ∃k : Eπ(ℓ(i, k)) < τ

0.5, ∀k : τ < Eπ(ℓ(i, k)) < ξ,

1, else.

with ξ > τ some pre-specified thresholds.
Reversed Occam’s Razor

Data: D,U , set SK+1 = AU , criterion
value c ∈ {0.5, 1}

Result: D
for k ∈ {K, . . . , 1} do

for i ∈ {1, . . . , |U|} do
predict Y ∋ ŷi = ŷ(xi)
evaluate Eπ(ℓ(i, k))

end
select Sk = {(xi, ŷi)i |
Φτ,ξ,π(a) ≥ c, a ∼ i}

if Sk ∩ Sk+1 ̸= ∅ : update
D = D ∪ (Sk ∩ Sk+1)

else stop
end

Multi-Label
Utility

Problem: Accumulation of Errors
• Inherent uncertainty in PLS: pseudo-

labeled data are treated as ground truths
in subsequent iterations

• Idea: Consider not all other hypotheti-
cal labels ỹi ∈ Y \ {ŷi} in PLS

Denote by ỹi,j ∈ Y all possible labels for
(xi,Y)i with j ∈ {1, . . . , J} and J = |Y|.
We assign utility to each (xi,Y)i by the fol-
lowing utility function ul : AU × Θ→ R;

((z,Y), θ) 7→
J∑

j=1
wj · p(D ∪ (z, ỹi,j) | θ, M)

with weights wj ∈ (0, 1) summing up to 1.

Multi-Data-
Utility

Problem: Covariate Shift
• PLS criteria render some unlabeled data

more likely to be added than others [8]
–> Induces distributional shift of covariates’

marginal distribution
• Idea: select pseudo-labeled data that are

optimal w.r.t both the de facto selected
data D and a hypothetical i.i.d. sample
D′ that we generate by drawing pseudo-
labeled data randomly.

We assign utility to each (xi,Y)i given D, D′
and the prediction functional ŷ : X → Y by
ud : AU × Θ→ R2;

((z,Y), θ) 7→ (ℓD(i), ℓD′(i))′,
with ℓD(i) = p(D ∪ (xi, ŷi) | θ, M) and
ℓD′(i) = p(D′ ∪ (xi, ŷi) | θ, M).

Results

• Extensive results on simulated and real-world data: github.com/rodemann/robust-pls

• Below: results from counterfeit banknote classification task [3]
– PLS with multi-model pseudo-posterior predictive (PPP) outperforms
– PLS with multi-label PPP underperforms
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