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Data (im)precision

• Epistemic data (imprecision): Imprecise/coarsened/censored observation of something that is actually precise (e.g., non-response to the question about income in social surveys).
• Ontic data (no imprecision): Exact observation of something (seemingly) imprecise.

More concretely, a precise data point is modeled by a set(, e.g., an interval can represent the lifespan of e.g., Wolfgang Amadeus Mozart, who lived from 27.01.1756 to 5.12.1791).
• Nonstandard data: Data with a non-standard underlying scale of measuremnt. Ontic data are often non-standard in this sense.
• Epiontic data: Ontic (or nonstandard) data that are observed with additional epistemic imprecision. E.g., Aribert Reimann (German composer, still alive) will have lived from

04.03.1936 to ? (This is an ontic interval-valued observation where the right endpoint of the interval is censored and therefore subject to epistemic imprecision.)

Our case

• 303 students were asked for their choices between 6 foreign universities for their
semester abroad.

• Within pair comparisons, they could prefer one university over another or vice
versa.

• They could also explicitly state that they have no preference between universities (i.e., incompar-
ibabilty of universities, not to be confused with indifference, is allowed). Therefore we have 303
partial orders as non-standard data points.

• By accident, some of the pair comparisons were not asked. This constitutes additional epistemic
data imprecision.

Our approach

• Used methodology: Data depth functions for poset-valued data.
• Data depth functions measure the centrality or outlyingness of data points w.r.t. a data cloud (or underlying probability law). Here we analyse Tukey’s depth, cf. [2], , [1] .
• Concretely, we used the generalized Tukey’s depth for poset-valued data:

Tukey’s depth of a poset p : T(p) := 1 − max
{

sup
(a,b)∈p

P ({q poset | (a, b) /∈ q}) , sup
(a,b)/∈p

P ({q poset | (a, b) ∈ q})
}

. (1)

• Handling of additional epistemic uncertainty:
• Tukey’s depth is a simple function in the columnwise proportions of crosses (see (1) and the cross table below).
• Analysis under the assumption of coarsening at random (CAR) ([4]).
• Analysis without additional modeling assumptions: Computing the cautious data completion (CDC) ([3]).
• The simple formula for the generalized Tukey’s depth allows the exact computation of the cautious data completion or at least a conservative approximation (depending on the

coarsening process).

The cautious data completion (CDC) and the coarsening at random (CAR) approach

Conceptual scaling:
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Analysis:
• CAR: Simply ignore NA’s.
• CDC:

Only one NA-column in the ≤-part: Exact solution
(One knows how to replace the NA’s with crosses/non-
crosses).
Otherwise: Exact lower bound and conservative upper
bound.

For results, see our Shiny app:

Future research

• Cautious Data Completion for other depth functions like the ufg depth, cf. [1] .
• More advanced handling of the CAR case (e.g., imputation techniques that account for dependencies between edges within posets).
• How to handle responses that are actually not posets, e.g., because the given relation is not transitive?
• In particular: Is it a problem that for a completely observed relation it is more probable that one can detect that is actually not a poset, compared

to a response that is only partially observed?
• Analyse further data sets.
• For the university data: Try it out yourself! (See QR Code.)

https://tinyurl.com/epiontic

How deep are your
preferences?
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