On Distinct Belief Functions in the D-S Theory

Prakash P. Shenoy pshenoy@ku.edu https://pshenoy.ku.edu/

Introduction

Dempster's combination rule is designed to combine distinct (independent) belief functions

- What constitutes distinct belief functions?
- What are distinct belief functions in directed graphical models
- What are distinct belief functions in undirected graphical models

1 Dempster's Definition of Distinct BFs

Figure 1: Dempster's multivalued mapping semantics

Definition 1 (Distinct belief functions (Dempster 1967)). Consider the situation in Fig. 1. m_{1} and m_{2} are distinct iff X_{1} and X_{2} are independent.
The essence of Dempster's definition is two BPAs are distinct iff there is no double-counting of non-idempotent knowledge.

2 Conditional Independence in the DS Theory

Definition 2 (Conditional independence (Shenoy 1994)). Suppose \mathcal{V} denotes the set of all variables, and suppose r, s, and t are disjoint subsets of \mathcal{V}. Suppose m is a joint BPA for \mathcal{V}. We say r and s are conditionally independent given t with respect to BPA m, written as $r \Perp_{m} s \mid t$, if and only if $m^{\downarrow r \cup s \cup t}=m_{r \cup t} \oplus m_{s \cup t}$, where $m_{r \cup t}$ is a BPA for $r \cup t, m_{s \cup t}$ is a BPA for $s \cup t$, and $m_{r \cup t}$ and $m_{s \cup t}$ are distinct.
This definition generalizes the CI relation in probability theory (Dawid 1979). The definition of CI in Def. 2 satisfies the graphoid properties of probabilistic conditional independence (Pearl and Paz 1987).

3 Non-informative BFs

Definition 3 (Non-informative BFs). Suppose m_{1} and m_{2} are BPAs for s_{1} and s_{2}, resp. We say m_{1} and m_{2} are mutually non-informative if $m_{1}^{\downarrow s_{1} \cap s_{2}}$ and $m_{2}^{\downarrow s_{1} \cap s_{2}}$ are vacuous BPAs for $s_{1} \cap s_{2}$. If $\mathcal{M}=\left\{m_{1}, \ldots m_{n}\right\}$ is a set of $B P A s$, we say \mathcal{M} is non-informative if every pair of BPAs in \mathcal{M} is mutually non-informative.

4 Directed Graphical Models in the DS Theory

For any node $X \in \mathcal{V}$, let $P a_{G_{d}}(X)$ denote $\{Y \in \mathcal{V}:(Y, X) \in \mathcal{E}\}$, the parents of X in $G_{d}=(\mathcal{V}, \mathcal{E})$.
Definition 4 (BF directed graphical model). Suppose we have a directed acyclic graph $G_{d}=(\mathcal{V}, \mathcal{E})$ with n nodes in \mathcal{V}. A belief-function directed graphical model $(B F D G M)$ is a pair $\left(G_{d},\left\{m_{1}, \ldots, m_{n}\right\}\right)$ such that BPA m_{i} associated with node X_{i} is a conditional BPA for X_{i} given $P a_{G_{d}}\left(X_{i}\right)$, for $i=1, \ldots, n$. A fundamental assumption of a BFDGM is that m_{1}, \ldots, m_{n} are all distinct, and the joint BPA m for \mathcal{V} associated with the model is given by

$$
\begin{equation*}
m=\bigoplus_{i=1}^{n} m_{i} \tag{1}
\end{equation*}
$$

Some comments about Def. 4:

1. The assumption in Def. 4 that all conditionals are distinct allows the combination in Eq. (1).
2. Given m, the joint BPA for \mathcal{V} as defined in Eq. (1), it follows from Def. 2 that the following CI relations hold. Suppose $\left(X_{1}, \ldots, X_{n}\right)$ is a topological sequence associated with $\operatorname{BFDGM}\left(G_{d},\left\{m_{1}, \ldots, m_{n}\right\}\right)$. Then for each X_{i}, $i=2, \ldots, n, X_{i} \Perp_{m}\left(\left\{X_{1}, \ldots X_{i-1}\right\} \backslash P a_{G_{d}}\left(X_{i}\right)\right) \mid P a_{G_{d}}\left(X_{i}\right)$.
3. $m_{1}, \ldots m_{n}$ are distinct iff each m_{i} is a conditional for X_{i} given $P a_{G_{u}}\left(X_{i}\right)$ for $i=1, \ldots, n$, and the CI assumptions of the model are all valid.

5 Undirected Graphical Models in the DS Theory

Given a variable $X \in \mathcal{V}$, the Markov blanket of X, denoted by $M B_{G_{u}}(X)$, is $\{Y \in \mathcal{V}:\{X, Y\} \in E\}$. A clique in $G_{u}=(\mathcal{V}, \mathcal{E})$ is a maximal complete subset of \mathcal{V}.
Definition 5 (BF undirected graphical model). A belief-function undirected graphical model (BFUGM) is $\left(G_{u}=(\mathcal{V}, \mathcal{E}),\left\{m_{1}, \ldots, m_{k}\right\}\right)$, where G_{u} is an undirected graph with cliques r_{1}, \ldots, r_{k}, and for each $i=1, \ldots, k, m_{i}$ is a BPA for r_{i}. A fundamental assumption of a BFUGM is that the BPAs are all distinct. Thus, a belief-function undirected graphical model corresponds to the joint $B P A m$ for \mathcal{V} defined as follows:

$$
\begin{equation*}
m=\bigoplus_{i=1}^{k} m_{i} \tag{2}
\end{equation*}
$$

assuming that m as defined in Eq. (2) is a well-defined BPA, i.e., the normalization constant K in Dempster's combination is non-zero.
Some comments about Def. 5.

1. The assumption in Def. 5 that the BPAs are all distinct allows the combination in Eq. (2).
2. Given m, the joint BPA for \mathcal{V}, it follows from Def. 5 that the following CI relations hold. For each $X \in \mathcal{V}, X \Perp_{m}\left(\mathcal{V} \backslash\left(M B_{G_{u}}(X) \cup\{X\}\right) \mid M B_{G_{u}}(X)\right.$.
3. m_{1}, \ldots, m_{k} are distinct if $\left\{m_{1}, \ldots, m_{k}\right\}$ is a non-informative set of BPAs, and the CI assumptions of the model are all valid.

Figure 3: Communication network problen

Acknowledgements

The Ronald G. Harper Professorship supported this study at the University of Kansas School of Business. The ideas discussed in this paper have benefitted from long email discussions with Radim Jiroušek and Václav Kratochvíl I am also grateful to three anonymous ISIPTA- 23 reviewers that provided constructive comments to improve the exposition.

