A Nonstandard Approach To Stochastic Processes Under Probability Bounding

Matthias C. M. Troffaes

Durham University, UK

What is internal set theory?

new predicate 'standard' that applies to objects (sets, functions, ...)
 three new axioms added to ZFC to govern use of this predicate [4]

Intuition?

What is a stochastic process?

Notation:

- \blacktriangleright standard finite state space \mathcal{X}
- ▶ index set $T_0 \subseteq \mathbb{R}_+$
- **>** possibility space Ω
- function $\xi: T_0 \times \Omega \to \mathcal{X}$
- ► $T \subseteq T_0$ any subset of T_0 (e.g. finite discretization)

given outcome ω at time *t*, the state is $\xi(t, \omega)$

 internal formulas: do not use 'standard' "0 + 1 equals 1"
 external formulas: do use 'standard' "0 is a standard natural number"
 for an object to be standard, intuitively, we mean [2, §1.1.1, p. 2]: 'at any stage within the mathematical discourse, [...] uniquely defined [using an explicitly written internal formula]'

Why is it useful?

- has the notion of an infinitesimal so the theory formalizes intuition that goes back to Newton, Leibniz, Cauchy, etc. [1]
- many objects have an infinitely close standard object, called its shadow: allows us to move between standard functions with infinite domain and non-standard functions with finite domain

very useful to study stochastic processes in continuous time!

Difficulties

- ► for historical reasons, most mathematicians are unfamiliar with it
- application of new axioms needs care: requires some retraining in logic
- illegal set formation: cannot form sets with external formulas

A(T) algebra generated by events of the form {ξ(t) = x}
 L(T) linear space spanned by A(T)
 K(T) := L(T) × (A(T) \ {Ø})

Definition

A *(stochastic) process* on T is a coherent lower prevision $\underline{\mathbb{E}}$ defined on $\mathcal{K}(T)$.

Nearby elementary processes

Theorem

Assume $T \subseteq T_0$ and T contains all standard elements of T_0 . Let $\underline{\mathbb{E}} : \mathcal{K}(T) \to \mathbb{R}$ be any process. Then there is a unique standard process $\underline{\mathbb{E}}_0 : \mathcal{K}(T_0) \to \mathbb{R}$, called the **shadow** of $\underline{\mathbb{E}}$, satisfying

 $\forall^{\mathrm{s}}(f, A) \in \mathcal{K}(T_0) \colon \underline{\mathbb{E}}(f \mid A) \simeq \underline{\mathbb{E}}_0(f \mid A)$

(5)

Definition

(2)

A standard process $\underline{\mathbb{E}}_0$ on T_0 is said to be *nearby* an elementary process $\underline{\mathbb{E}}$ on T if $T \subseteq T_0$, T contains all standard elements of T_0 , and $\underline{\mathbb{E}}_0$ is the shadow of $\underline{\mathbb{E}}$.

Imprecise Markov chains: Notation

- *T* is a finite subset of *T*₀ containing all standard elements of *T*₀ *T'* := *T* \ {max *T*}
- ▶ if $t \in T'$ then t + dt denotes the successor of t in T, i.e.

 $dt \coloneqq \min\{t' \in T \colon t' > t\} - t$

▶ for any function ϕ on T, $\phi(0:t)$ denotes the restriction of ϕ to $[0,t] \cap T$

Imprecise Markov chains: Definition

- - 12

Continuous time imprecise Markov chains

fix a standard lower rate operator Q: R^X → R^X and define <u>T</u>_t := I + dtQ
the shadow <u>E</u>₀ of this elementary imprecise Markov chain behaves just like the usual continuous time imprecise Markov chains Theorem For all x ∈ X, f ∈ R^X, and t ≥ 0, <u>E</u>₀(f(ξ(t)) | ξ(0) = x) = e^{tQ}(f)(x).

Sketch of proof

▶ I: coherent lower prevision on $\mathbb{R}^{\mathcal{X}}$ ▶ $\underline{\mathbb{T}}_t(\cdot)(x)$: coherent lower prevision on $\mathbb{R}^{\mathcal{X}}$ (for each $t \in T'$ and $x \in \mathcal{X}$) Definition

A precise elementary process \mathbb{E} on T is **compatible** with $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$ if for all paths $x: T' \to \mathcal{X}$, all $t \in T'$, and all $f \in \mathbb{R}^{\mathcal{X}}$,

 $\mathbb{E}(f(\xi(0)) \ge \underline{\mathbb{I}}(f)$ (3) $\mathbb{E}(f(\xi(t+dt)) \mid \xi(0:t) = x(0:t)) \ge \underline{\mathbb{T}}_t(f)(x(t))$ (4)

If $\underline{\mathbb{E}}$ denotes the lower envelope of all these compatible precise elementary processes, then $\underline{\mathbb{E}}$ is called the **elementary imprecise Markov chain** induced by $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$. Its shadow is called the **imprecise Markov chain** induced by $(\underline{\mathbb{I}}, \underline{\mathbb{T}})$.

 [1] Alexandre Borovik and Mikhail G. Katz, Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus, Foundations of Science 17 (2012), no. 3, 245–276.

[2] Francine Diener and Marc Diener (eds.), Nonstandard analysis in practice, Springer, 1995.

[3] Thomas Krak, Jasper De Bock, and Arno Siebes, *Imprecise continuous-time Markov chains*, International Journal of Approximate Reasoning 88 (2017), 452–528.

[4] Edward Nelson, Radically elementary probability theory, Annals of Mathematical Studies, Princeton University Press, New Jersey, 1987.

Assume t > 0. By transfer, only need to establish the equality for standard t. It suffices to show that

$$\left\|\prod_{s < t} (I + ds\underline{\mathbb{Q}}) - e^{t\underline{\mathbb{Q}}}\right\| \simeq 0 \tag{6}$$

Indeed, with $\delta := \max_{s < t} ds$,

$$\begin{aligned} \left\| \prod_{s < t} (I + ds\underline{\mathbb{Q}}) - e^{t\underline{\mathbb{Q}}} \right\| &= \left\| \prod_{s < t} (I + ds\underline{\mathbb{Q}}) - \prod_{s < t} e^{ds\underline{\mathbb{Q}}} \right\| \end{aligned} \tag{7} \\ &\leq \sum_{s < t} \left\| I + ds\underline{\mathbb{Q}} - e^{ds\underline{\mathbb{Q}}} \right\| \lesssim \sum_{s < t} (ds)^2 \|\underline{\mathbb{Q}}\|^2 \tag{8} \\ &\leq \sum_{s < t} (ds)\delta \|\underline{\mathbb{Q}}\|^2 = t\delta \|\underline{\mathbb{Q}}\|^2 \simeq 0 \tag{9} \end{aligned}$$