A Nonstandard Approach To Stochastic Processes Under Probability Bounding

- new predicate 'standard' that applies to objects (sets, functions, ...)
- three new axioms added to ZFC to govern use of this predicate [4]

Intuition?

> internal formulas: do not use 'standard'

- external formulas: do use 'standard'
- for an object to be standard, intuitively, we mean [2, §1.1.1, p. 2]:
'at any stage within the mathematical discourse, [...] uniquely defined [using an explicitly written internal formula]'

Why is it useful?

- has the notion of an infinitesimal so the theory formalizes intuition that goes back to Newton, Leibniz, Cauchy, etc. [1]
\rightarrow many objects have an infinitely close standard object, called its shadow: allows us to move between standard functions with infinite domain and non-standard functions with finite domain very useful to study stochastic processes in continuous time!

Difficulties

- for historical reasons, most mathematicians are unfamiliar with it
- application of new axioms needs care: requires some retraining in logic
- illegal set formation: cannot form sets with external formulas

Imprecise Markov chains: Notation
∇T is a finite subset of T_{0} containing all standard elements of T_{0}

- $T^{\prime}:=T \backslash\{\max T\}$
if $t \in T^{\prime}$ then $t+d t$ denotes the successor of t in T, i.e.
$d t:=\min \left\{t^{\prime} \in T: t^{\prime}>t\right\}-t$
(2)
- for any function ϕ on $T, \phi(0: t)$ denotes the restriction of ϕ to $[0, t] \cap T$

Imprecise Markov chains: Definition

II: coherent lower prevision on $\mathbb{R}^{\mathcal{X}}$

- $\mathbb{T}_{t}(\cdot)(x)$: coherent lower prevision on $\mathbb{R}^{\mathcal{X}}$ (for each $t \in T^{\prime}$ and $x \in \mathcal{X}$)

Definition
A precise elementary process \mathbb{E} on T is compatible with (\mathbb{I}, \mathbb{T}) if for all paths $x: T^{\prime} \rightarrow \mathcal{X}$, all $t \in T^{\prime}$, and all $f \in \mathbb{R}^{\mathcal{X}}$,

$$
\mathbb{E}(f(\xi(0)) \geq \mathbb{I}(f)
$$

$\mathbb{E}(f(\xi(t+d t)) \mid \xi(0: t)=x(0: t)) \geq \mathbb{T}_{t}(f)(x(t))$
If \mathbb{E} denotes the lower envelope of all these compatible precise elementary processes, then \mathbb{E} is called the elementary imprecise Markov chain induced by (\mathbb{I}, \mathbb{T}). Its shadow is called the imprecise Markov chain induced by (\mathbb{I}, \mathbb{T}).

