
Policy Iteration for
Sum-Product Inferences
Pieter-Jan Vandaele, Jasper De Bock
{PieterJan.Vandaele,Jasper.DeBock}@UGent.be

FLip, Belgium

Question: what is the
IMC equivalent of his-
tory random MDPs?

¿¿¿FLiP quiz???

×0.9

×0.8 ×0.7p2→2 p3→3

p1→1

p1→2

p2→1

p2→3

p3→2

p1→3

p3→1

Abstract
In this poster we take a closer look at the similarities between Markov Decision Processes and

Imprecise Markov Chains. Using this connection, we apply the MDP-technique of policy iteration to
sum-product inferences as known in IMC literature, leading to a new efficient algorithm.

I’m no expert in economics,
so my knowledge of the tran-
sition probabilities is impre-
cise. These can be in a range
of what I believe is possible.

Some years my buying power
decreases by a factor of 0.9,
in other years by 0.8 or 0.7.

Intro
Does this problem sound familiar?

dink
Do you also wonder the following?

Do you also wonder the following?

Well, wonder no more, because policy iteration for
sum-product inferences is here! This is an example of a

system that can be modelled with a Sum-Product Inference .
In particular, for a sum-product gamble f , we are interested in

the limit E∞(f |x) = limn→∞ E[f (X1:n)|X1 = x].

I only get paid a measly wage, and due to that darn
ever-changing inflation, it is worth less and less!

Last year, I could buy 100 Pokémon cards with my salary.
Now I can only buy 90!

I really wonder how big my collection will be when I retire.

Imprecise Markov
Chains (IMCs) ≈

IMCs in one sentence:
When facing an uncertain process, what is the

maximal or minimal outcome that I could
expect from a given gamble?

Markov Decision
Processes (MDPs)

MDPs in one sentence:
Given a range of possible actions, what should
I do to maximise or minimise the expected
reward of some process?

Main Features
Discrete time •

State space X •
Set of transition matrices T , in this poster we •

assume this set to be closed and has
separately defined rows.

Gamble f (x) •
Inferences can be calculated with recursive •

schemes

↔
↔

↔

↔
↔

• Decision epochs T = 1, 2, 3 . . .
• State space S (here assumed to be finite)
• Each state has an action space As,t.
• A policy π(s), which dictates what action to

take at state s
• Transition probabilites Pt,a
• Reward rt(s, a)
• The maximal expected reward can be
calculated using the value iteration algorithm.

Different types

An IMC can be seen as a set of stochastic
processes, of which three are particularly

interesting.
1. Repetition independence (RI): contains all

stationary precise Markov chains compatible
with the imprecise probabilities.

2. Complete independence (CI): contains all
precise Markov chains compatible with the
imprecise probabilities.

3. Epistemic irrelevance (EI): contains all
compatible stochastic processes, but the indi-
vidual processes are not neccesarily Marko-
vian.

MDP literature distinguishes different types of
policies, based on how a policy can choose

which action to take.

1. Stationary deterministic (SD): regardless of
time, the policy will always choose the same
action in a given state.

2. Markovian deterministic (MD): the action is
chosen based solely on the current state, but
the decision strategy can change over time.

3. History random (HR): the chosen policy
chooses an action based on the previous ac-
tions and states.

↔

↔

↔

Unique to IMCs

• Considers more general inferences such as
hitting times, hitting probabilities or ’time-
bounded until’ events. These appear under
the umbrella of

Sum-Product Inferences ➊ .

Unique to MDPs

• Typically considers ’discounted’ reward pro-
cesses

• Rewards (or costs) can depend on the chosen
action

• Not only interested in the extremal value possi-
ble, but also the path that it takes to get there

• Has a wider variety of algorithms, such as

policy iteration ➋

We consider so-called sum-product gambles
f (X1:n) ∈ L(X n). Their value for a trajectory x1:n

is given by

f (x1:n) :=
n

∑
k=1

g(xk)
k−1

∏
l=1

h(xl). (1)

Here g can be any gamble, and g(x) seen as a
reward collected when entering state x. The

gamble h should be non-negative and represents
a multiplicative modifier for future rewards.
When looking at sum-product gambles, the

following holds:

ECI[f (X1:n)] = EEI[f (X1:n)]. (2)

That is, there is no distinction in lower (or upper)
expectation when considering an IMC under EI or

CI. This value, however, does not neccesarily
coincide with the expectation of the IMC under RI.

Sum-Product Inferences

When considering IMCs under repetition independence or epistemic
irrelevance, the upper and lower expectation at time instant n can be

calculated by means of a recursive scheme:

E(f (X1:n)) = Ln0, (3)

with the lower progression function L : X → X defined as

Lπ = hTπ + g (4)

This approach, however, leaves two problems:
• In the limit for n going to infinity, the recursion should be done infinitely

many times.

• This does not work in the case of repetition independence, where all
possible precise Markov chains should be compared.

Existing method for calculating
Sum-Product inferences

I have to this calculation an infinite amount of times!?
Nobody’s got time for that!

I should compare ALL compatible precise chains?

➊ + ➋ = Our novel algorithm:

If all h(x) are smaller than unity, it is possible to
use a policy-iteration like scheme to calculate
the limit expectations. The procedure is as fol-
lows:

1. Initialisation: choose a transition matrix T0
from T

2. Evaluation: solve the linear equation for fn

(I − h · Tn) fn = g (5)

3. Update: Choose Tn+1 such that

Tn+1 fn = T fn (6)

choosing Tn+1 = Tn if possible.

4. Stop if Tn+1 = Tn, then E1(fn) = E∞(f)

The algorithm In the limit, all types of IMCs are equivalent

We have shown that when looking at the limit E∞(f |x) the type of IMC
considered does not matter. This means we can limit ourselves to
looking at stochastic processes in the set of IMCs under repetition

independence, the most restrictive set. This is the basic idea of policy
iteration.

In the limit, all types of
IMCs are equivalent!

Time Complexity
The main computational expense of each iteration

consists of solving the linear equation, which can be
done in O(|X |ω), where ω is the matrix

multiplication constant (in pratical algorithms this is
about 2.8).

Assuming that T is defined by a finite amount of
linear bounds - which is doable in most practical
settings. Then the algorithm finishes in a finite

amount of iterations.

Time Complexity

References:
[1] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, 2005.
[2] De Bock, Erreygers, Krak. Sum-product laws and efficient algorithms for imprecise Markov chains. PMLR, 2021.

