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Intro
Does this problem sound familiar?

Abstract
In this poster we take a closer look at the similarities between Markov Decision Processes and

Imprecise Markov Chains. Using this connection, we apply the MDP-technique of policy iteration to
sum-product inferences as known in IMC literature, leading to a new efficient algorithm.

| only get paid a measly wage, and due to that darn

ever-changing inflation, it is worth less and less!

Do you also wonder the following?

ImprECISe MarkOV Markov DeCiSion  Last year, | could buy 100 Pokémon cards with my salary.

. ~ } Now | can only buy 90!
Chal nS (I MCS) Processes (M DPS) | really wonder how big my collection will be when | retire.
_ _ Well, wonder no more, because policy iteration for
LA I IS S Eee: SIS Ehe SEiprEe: sum-product inferences is here! This is an example of a
When facing an uncertain process, what is the Given a range of possible actions, what should system that can be modelled with a EiERer IS, L
maximal or minimal outcome that | could | do to maximise or minimise the expected In particular, for a sum-product gamble f, we are interested in ¢
expect from a given gamble? reward of some process? the limit Eo.(f|x) = limy_seo E[f(X1.0)| X1 = x]-

Main Features

Discrete time ¢ ¢35 e Decisionepochs T =1,2,3... Some years my buying power I'm no expert in economics,
State space X' e <> e State space S (here assumed to be finite) decreases by a factor of 0.9, so my knowledge of the tran-
Set of transition matrices 7, in this poster we e ‘e Each state has an action space As ;. in other years by 0.8 or 0.7. P1—1 sition probabilities is impre-
assume this set to be closed and has L A policy 7t(s), which dictates what action to | cise. These can be in a range
separately defined rows. take at state s of what | believe is possible.
e Transition probabilites P,
Gamble f(x) e <> e Reward r(s,a)
Inferences can be calculated with recursive ¢ <= e The maximal expected reward can be
schemes calculated using the value iteration algorithm. P2 P13
. D10 P3—1
Different types _
A P23 N
An IMC can be seen as a set of stochastic MDP literature distinguishes different types of P22 X (0.8 pP3—3
processes, of which three are particularly policies, based on how a policy can choose
interesting. which action to take. P3—2
1.Repetition ind.ependence (R!): containg all 1. Stationary deterministic (SD): regardless of
. it Existing method for calculatin
2.Complete independence (Cl): contains all 2. Markovian deterministic (MD): the action is sting method _O calculating
precise Markov chains compatible with the <= chosen based solely on the current state, but Sum-Product inferences
|m|c.)reC|s? prc.>bab|I|t|es. | the decision strategy can change over time. When considering IMCs under repetition independence or epistemic
3. Eplsterplc wrelevgnce (El): contams. a.” 3. History random (HR): the chosen policy irrelevance, the upper and lower expectation at time instant n can be
compatible stochastic processes, butthe indi- <5 chooses an action based on the previous ac- calculated by means of a recursive scheme:
vidual processes are not neccesarily Marko- -
Vo P y tions and states. E(f(Xy.,)) = L"0, (3)
_ _ with the lower progression function L : X — & defined as
Unique to IMCs Unique to MDPs L= hTr+ g %)
» Considers more general inferences such as * Typically considers ‘discounted’ reward pro- . Ulalks approach, ho.wever, Ieaveg two problems: e
s . e e N e In the limit for n going to infinity, the recursion should be done infinitely
hitting times, hitting probabilities or ’‘time- cesses ,
- many times.
bounded until" events. These appear under » Rewards (or costs) can depend on the chosen
the umbrella of action | have to this calculation an infinite amount of times!?
. . . Nobody’s got time for that!
Sum-Product Inferences o _ Not only interested in the gxtremal value possi- | . s
ble, but also the path that it takes to get there e This does not work in the case of repetition independence, where all
» Has a wider variety of algorithms, such as possible precise Markov chains should be compared.
: : : | should compare ALL compatible precise chains?
I policy iteration @ g e
Sum-Product Inferences O+0-=

In the limit, all types of
IMCs are equivalent!

We have shown that when looking at the limit E,(f|x) the type of IMC
considered does not matter. This means we can limit ourselves to
looking at stochastic processes in the set of IMCs under repetition

We consider so-called sum-product gambles

f(X1.,) € L(X"). Their value for a trajectory x1.,, The algOI‘Ithm

IS given by If all h(x) are smaller than unity, it is possible to

licy-iteration like scheme to calculate
f(%1:n) : xi) [ T h(x). My =2 | .
) Z 3 H the limit expectations. The procedure is as fol-

lows:
Here g can be any gamble, an.d g(x) seen as a e .. _ iIndependence, the most restrictive set. This is the basic idea of policy
reward collected when entering state x. The 1. Initialisation: choose a transition matrix Tj teration
gamble % should be non-negative and represents from T '
a multiplicative modifier for future rewards. > Evaluation: solve the linear e - . .
. - : quation for f, - . Question: what is the
When looking at sum-product gambles, the I T)f =g 5) Time CompIeXIty IMC equivalent of his-
following holds: S T
- : - - tor random MDPs?
ECI[f(X V] = EEI[f(X N 2) 3. Update: Choose T, ; such that The main computatlon.al expense .Of each iteration P J
= it = Ll consists of solving the linear equation, which can be l-. ]1:
That is, there is no distinction in lower (or upper) Tyt1fn = 1fn (6) done in O(|X|), where w is the matrix .:'l'
expectation when considering an IMC under El or choosing T,.1 = T, If possible. multiplication constant (in pratical algorithms this is Je
Cl. This value, however, does not neccesarily 4. Stop if Tyy1 = Ty, then Eq(fy) = Eo,(f) about 2.8). ) *

coincide with the expectation of the IMC under RI.

Assuming that 7 is defined by a finite amount of
linear bounds - which is doable in most practical
settings. Then the algorithm finishes in a finite

amount of iterations. ¢&¢ FLIP quiz??2?
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