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Context

This work is centered around an optimization problem with a linear objective (LOP):

max cT x

s.t. x ∈ X ⊆ Zn1
≥0 × Rn2

≥0 with n1 + n2 = n.
(LOP)

In real life, coefficients ci in LOP are usually uncertain.

Uncertainty can be represented by discrete scenario sets (e.g.,{c1, c2}) or by
intervals:

Our focus

We investigate the case where the uncertainty on the coefficients ci of c is
evidential, i.e., modelled by a belief function.

We consider the case where focal sets of the belief function are Cartesian product

of compact sets, with each compact set describing possible values of each

coefficient.

Such a belief function is a direct and natural generalization of the interval

representation found in robust optimization.

Belief Function Theory

A frame Ω (closed subset of Rn) contains all possible values of a variable of interest

ω.

We would like to quantify the uncertainty about statements like “the subset A of

Ω contains the true value of ω”.

It can be represented by a mapping m : C 7→ [0, 1] called mass function, where C is

assumed here to be a finite collection of closed subsets of Ω, such that:∑
A∈C

m(A) = 1 and m(∅) = 0

A ⊆ Ω is called focal set if m(A) > 0. The set of all focal sets of m is denoted by F .

m induces a belief function Bel and a plausibility function Pl defined on B(Ω) the
Borel subsets of Ω:

Bel(A) =
∑

B∈F :B⊆A

m(B), P l(A) =
∑

B∈F :B∩A 6=∅
m(B).

A probability measure P on B(Ω) is compatible with m if

Bel(A) ≤ P (A) ∀A ∈ B(Ω). Let P(m) be set of all compatible probability

measures.

Evidential coefficients in the objective

Let Ωi be the set of possible values for ci and let Ω := ×n
i=1Ωi. Each c ∈ Ω is called

a scenario.

A mass function m on Ω, with set of focal sets F = {F1, . . . , FK}, represents
uncertainty about the coefficients.

We assume that each focal set is a Cartesian product of compact sets, i.e.,

Fr = ×n
i=1F

↓i
r , ∀r ∈ {1, . . . , K}.

The minimum and maximum values of F
↓i
r are denoted by lri and ur

i , respectively.

Expected values of solutions

Each x ∈ X can be viewed as an act x : Ω → R such that x(c) =
∑n

i=1 xici.

The upper expected value Em(x) and lower expected value Em(x) of x, relative to

m, are defined as:

Em(x) := sup
P∈P(m)

EP (x), Em(x) := inf
P∈P(m)

EP (x).

It can be shown that

E(x) =
n∑

i=1
ūixi, E(x) =

n∑
i=1

l̄ixi,

with ūi :=
∑K

r=1 m(Fr)ur
i and l̄i :=

∑K
r=1 m(Fr)lri , i = 1, . . . , n.

Possibly optimal solutions

This notion appears in many works in minimax regret optimizations with interval

data.

x is a possibly optimal solution of LOP with respect to the set C := ×n
i=1[l̄i, ūi] if

x is an optimal solution for at least one c in C.
Let OptCpos be the set of all possibly optimal solutions.

Comparing solutions

With criteria in decision making under uncertainty, we can compare solutions as:

Generalized Hurwicz: x �α
hu y if

αEm(x) + (1 − α)Em(x) ≥ αEm(y) + (1 − α)Em(y),

for some fixed α ∈ [0, 1].
Strong dominance: x �str y if

Em(x) ≥ Em(y).

Weak dominance: x �weak y if

Em(x) ≥ Em(y) and Em(x) ≥ Em(y).

Maximality: f �max g if

Em(x − y) ≥ 0 ⇔ ∀P ∈ P(m), EP (x) ≥ EP (y).

E-admissibility: x is E-admissible if ∃P ∈ P(m) such that EP (x) ≥ EP (y) ∀y.

Best solutions definitions

For �cr in {�α
hu, �str, �weak, �max, �adm}, the set of non-dominated (best) solu-

tions:

Optcr = {x : @y such that y �cr x}.

Results

We characterize non-dominated solutions by established concepts in optimization.

For any LOP,
Solutions in Optα

hu are characterized in terms of optimal solutions of LOP with coefficients

ci = αūi + (1 − α)l̄i.
Solutions in Optstr are characterized in terms of solutions of a lower-bound feasibility problem

associated with LOP.

Solutions in Optweak are characterized in terms of efficient solutions of a bi-objective LOP,

where each ci has two weights ūi, l̄i.
Optadm ⊆ OptC

pos ⊆ Optmax.

Moreover,
If LOP is a linear mixed-integer programming (i.e., X is in the form of Mx ≤ b for a matrix M
and a vector b), Optadm = OptC

pos and in general OptC
pos ⊂ Optmax.

If LOP is convex (i.e., X is convex) or combinatorial (i.e., X ⊆ {0, 1}n),

Optadm = OptC
pos = Optmax.

Important consequences

Finding non-dominated solutions amounts to solving the deterministic version

or well-known variants of the problem. Hence, fast existing methods can be

applied.

As α varies from 0 to 1, solutions in Optαhu can be found at once by using

method from parametric optimizations such as parametric simplex method.

In general, checking E-admissibility is costly. But thanks to the link with OptCpos,

it implies that:
In the case of linear programming (number of acts is infinite), checking E-admissibility is fast

by just using simplex algorithms.

In the case of combinatorial optimization problem (number of acts is finite but extremely

huge), if the deterministic problem can be solved efficiently (e.g., the shortest path problem),

checking E-admissibility is also efficient.

Open problem: ∃ an instance of LOP such that Optadm ⊂ OptCpos?
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