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Context Expected values of solutions
This work is centered around an optimization problem with a linear objective (LOP): " Each z € X can be viewed as an act x : 2 — R such that z(c) = > o T,
max Lr Lo = The upge:CI expjcted value Ey,(x) and lower expected value E,,(x) of z, relative to
st e X CZY x RY with ny +ng = n. 1M AT SETNEE &5
B B Em(x) = sup FEp(x), E,,(xr):= inf FEp(x).
. . . . PeP(m) PeP(m)
= |In real life, coefficients ¢; in LOP are usually uncertain.
. . . = |t can be shown that
= Uncertainty can be represented by discrete scenario sets (e.g.,{e1, ¢2}) or by " -
intervals: E(z) = Zf&ixi, E(r) = Z oz,
i=1 1=1
(a) Scenario (b) Scenario with u; = Z£1 m(E)ul and [; == 27{{:1 m(F)l, i =1,...,n.

c1=(2.5.4,3,4) ¢ =(3.4,5,1,2)

Possibly optimal solutions

2 3 3 1
(j\ C:\ = This notion appears in many works in minimax regret optimizations with interval
: - s 30 data.
5 G/ 4 G)/ = z is a possibly optimal solution of LOP with respect to the set C := X?:ﬂl_q;, u;| if
2 1S an optimal solution for at least one ¢ in C.

= et Optgos be the set of all possibly optimal solutions.

Figure: Discrete scenario representation
Comparing solutions

G\ = With criteria in decision making under uncertainty, we can compare solutions as:
[1.3]
[3.6]

= Generalized Hurwicz: x =%, y if

aFEn(z)+ (1 — &)E,(2) > aEn(y) + (1 — &) E,,(y),

for some fixed a € [0, 1].
Strong dominance: & >, y If

[3.5] [2.4]

Weak dominance: = year ¥ If

Figure: Interval representation _

Maximality: f >ae g If

Our focus E,(r—y) 20 VP eP(m), Ep(z) > Ep(y).
E-admissibility: z is E-admissible if 3P € P(m) such that Ep(z) > Ep(y) Vy.

= We investigate the case where the uncertainty on the coefficients ¢; of ¢ is

evidential, i.e., modelled by a belief function.

= We consider the case where focal sets of the belief function are Cartesian product Best solutions definitions

of compact sets, with each compact set describing possible values of each

For =cr IN {=%,» =strs Zweaks Zmaz> Zadm ) the set of non-dominated (best) solu-

coefficient. I -
= Such a belief funch’on.is a direct aﬁd hatgral generalization of the interval Opter = {x : By such that y =¢ z}.
representation found in robust optimization.
(a) Focal set F; with (b) Focal set F> with Results

m(Fl) = 0.8 m(Fz) = 0.2

We characterize non-dominated solutions by established concepts in optimization.

= For any LOP,

= Solutions in Opt?, are characterized in terms of optimal solutions of LOP with coefficients
¢ = ail; + (1 — a)l;.

= Solutions in Optg, are characterized in terms of solutions of a lower-bound feasibility problem
associated with LOP.

= Solutions in Opt,..q. are characterized in terms of efficient solutions of a bi-objective LOP,
where each ¢; has two weights ;, I;.

. Optadm C Optgos C Optmax-

= Moreover,

= |f LOP is a linear mixed-integer programming (i.e., X is in the form of Mz < b for a matrix M
and a vector b), Opt i, = Optgos and in general Optgos C Optaz-

= |f LOP is convex (i.e., X is convex) or combinatorial (i.e., X C {0, 1}"),
Optadm — Optc — Optmaa:-

POS

Belief Function Theory

= Aframe € (closed subset of R™) contains all possible values of a variable of interest Important consequences
W.

= Finding non-dominated solutions amounts to solving the deterministic version

= We would like to quantify the uncertainty about statements like “the subset A of or well-known variants of the problem. Hence, fast existing methods can be

() contains the true value of w’.

applied.
= |t can be represented byg mapping m : C — [0, 1] called mass function, where C is » As a varies from O to 1, solutions in Opt$ can be found at once by using
assumed here to be a finite collection of closed subsets of (2, such that: method from parametric optimizations such as parametric simplex method.
Z m(A) =1 and m(0) = 0 - .In.gen.eral, checking E-admissibility is costly. But thanks to the link with OpthS,
ee it implies that:

: : = |n th fli ' ber of acts is infinite), checking E-admissibility is fast
= A C Qs called focal set if m(A) > 0. The set of all focal sets of m is denoted by F. bnyjuitcj;eng Singerfxp;%ggigmlgg nSbEpotectsislnimiteieheerinaisadnissibilit Aciics
= m induces a belief function Bel and a plausibility function Pl defined on B(f?) the = |n the case of combinatorial optimization problem (number of acts is finite but extremely

Borel subsets of O huge),. if the det.ermi.n.ish'.c problem can be solved efficiently (e.g., the shortest path problem),
checking E-admissibility is also efficient.
Bel(A)= > m(B), PlA)= >  m(B) = Open problem: 3 an instance of LOP such that Opt g, C OptSys?
BeF:BCA BEF:BNAA]

= A probability measure P on B(£2) is compatible with m if
Bel(A) < P(A) VA € B(Q2). Let P(m) be set of all compatible probability
measures.

Evidential coefficients in the objective

" Let €2; be the set of possible values for ¢; and let €2 := x7'_,);. Each ¢ € Q) is called
a scenario.

= A mass function m on €2, with set of focal sets F = {F1, ..., Fi}, represents
uncertainty about the coefficients.

* We assume that each focal set is a Cartesian product of compact sets, i.e.,
Fp=x" FY' vre{l,... K}

= The minimum and maximum values of FriZ are denoted by [} and u;, respectively.




