Context

This work is centered around an optimization problem with a linear objective (LOP): $\max c^{T} x$

$$
\text { s.t. } x \in \mathcal{X} \subseteq \mathbb{Z}_{\geq 0}^{n_{1}} \times \mathbb{R}_{\geq 0}^{n_{2}} \text { with } n_{1}+n_{2}=n
$$

- In real life, coefficients c_{i} in LOP are usually uncertain.
- Uncertainty can be represented by discrete scenario sets (e.g.,\{ $\left.\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}\right\}$) or by intervals:
(a) Scenario
(b) Scenario
$c_{1}=(2,5,4,3,4)$
$\boldsymbol{c}_{2}=(3,4,5,1,2)$

Figure: Discrete scenario representation

Figure: Interval representation

Our focus

- We investigate the case where the uncertainty on the coefficients c_{i} of c is evidential, i.e., modelled by a belief function.
- We consider the case where focal sets of the belief function are Cartesian product of compact sets, with each compact set describing possible values of each coefficient.
- Such a belief function is a direct and natural generalization of the interval representation found in robust optimization.
(a) Focal set F_{1} with $m\left(F_{1}\right)=0.8$
(b) Focal set F_{2} with

$m\left(F_{2}\right)=0.2$

Belief Function Theory

- A frame Ω (closed subset of \mathbb{R}^{n}) contains all possible values of a variable of interest
- We would like to quantify the uncertainty about statements like "the subset A of Ω contains the true value of ω ".
- It can be represented by a mapping $m: \mathcal{C} \mapsto[0,1]$ called mass function, where \mathcal{C} is assumed here to be a finite collection of closed subsets of Ω, such that:

$$
\sum_{A \in \mathcal{C}} m(A)=1 \text { and } m(\emptyset)=0
$$

- $A \subseteq \Omega$ is called focal set if $m(A)>0$. The set of all focal sets of m is denoted by \mathcal{F}. - m induces a belief function Bel and a plausibility function Pl defined on $\mathcal{B}(\Omega)$ the Borel subsets of Ω :

$$
\operatorname{Bel}(A)=\sum_{B \in \mathcal{F}: B \subseteq A} m(B), \quad P l(A)=\sum_{B \in \mathcal{F}: B \cap A \neq \emptyset} m(B) .
$$

- A probability measure P on $\mathcal{B}(\Omega)$ is compatible with m if
$\operatorname{Bel}(A) \leq P(A) \forall A \in \mathcal{B}(\Omega)$. Let $\mathcal{P}(m)$ be set of all compatible probability measures.

Evidential coefficients in the objective

- Let Ω_{i} be the set of possible values for c_{i} and let $\Omega:=\times_{i=1}^{n} \Omega_{i}$. Each $c \in \Omega$ is called a scenario.
- A mass function m on Ω, with set of focal sets $\mathcal{F}=\left\{F_{1}, \ldots, F_{K}\right\}$, represents uncertainty about the coefficients.
- We assume that each focal set is a Cartesian product of compact sets, i.e., $F_{r}=\times_{i=1}^{n} F_{r}^{\downarrow i}, \forall r \in\{1, \ldots, K\}$.
- The minimum and maximum values of $F_{r}^{\downarrow i}$ are denoted by l_{i}^{r} and u_{i}^{r}, respectively.

Expected values of solutions

- Each $x \in \mathcal{X}$ can be viewed as an act $x: \Omega \rightarrow \mathbb{R}$ such that $x(c)=\sum_{i=1}^{n} x_{i} c_{i}$. - The upper expected value $\bar{E}_{m}(x)$ and lower expected value $\underline{E}_{m}(x)$ of x, relative to m, are defined as:

$$
\bar{E}_{m}(x):=\sup _{P \in \mathcal{P}(m)} E_{P}(x), \quad \underline{E}_{m}(x):=\inf _{P \in \mathcal{P}(m)} E_{P}(x) .
$$

It can be shown that

$$
\bar{E}(x)=\sum_{i=1}^{n} \bar{u}_{i} x_{i}, \underline{E}(x)=\sum_{i=1}^{n} \bar{l}_{i} x_{i},
$$

with $\bar{u}_{i}:=\sum_{r=1}^{K} m\left(F_{r}\right) u_{i}^{r}$ and $\bar{l}_{i}:=\sum_{r=1}^{K} m\left(F_{r}\right) l_{i}^{r}, i=1, \ldots, n$.

Possibly optimal solutions

- This notion appears in many works in minimax regret optimizations with interva data.
- x is a possibly optimal solution of LOP with respect to the set $\mathcal{C}:=\times_{i=1}^{n}\left[\bar{l}_{i}, \bar{u}_{i}\right]$ if x is an optimal solution for at least one c in \mathcal{C}
- Let $O p t_{\text {pos }}^{\mathcal{C}}$ be the set of all possibly optimal solutions.

Comparing solutions

- With criteria in decision making under uncertainty, we can compare solutions as
- Generalized Hurwicz: $x \succeq_{h u}^{\alpha} y$ if

$$
\alpha \bar{E}_{m}(x)+(1-\alpha) \underline{E}_{m}(x) \geq \alpha \bar{E}_{m}(y)+(1-\alpha) \underline{E}_{m}(y)
$$

for some fixed $\alpha \in[0,1]$.

- Strong dominance: $x \succeq_{\text {str }} y$ if

$$
\underline{E}_{m}(x) \geq \bar{E}_{m}(y)
$$

- Weak dominance: $x \succeq_{\text {weak }} y$ if

$$
\bar{E}_{m}(x) \geq \bar{E}_{m}(y) \text { and } \underline{E}_{m}(x) \geq \underline{E}_{m}(y) .
$$

- Maximality: $f \succeq_{\max } g$ if
$\underline{E}_{m}(x-y) \geq 0 \Leftrightarrow \forall P \in \mathcal{P}(m), E_{P}(x) \geq E_{P}(y)$.
- E-admissibility: x is E-admissible if $\exists P \in \mathcal{P}(m)$ such that $E_{P}(x) \geq E_{P}(y) \forall y$

Best solutions definitions

For $\succeq_{c r}$ in $\left\{\succeq_{h u}^{\alpha}, \succeq_{s t r}, \succeq_{\text {weak }}, \succeq_{\text {max }}, \succeq_{a d m}\right\}$, the set of non-dominated (best) solutions:

$$
O p t_{c r}=\left\{x: \nexists y \text { such that } y \succ_{c r} x\right\} .
$$

Results

We characterize non-dominated solutions by established concepts in optimization

- For any LOP,

- Solutions in $O p t_{h u}^{\alpha}$ are characterized in terms of optimal solutions of LOP with coefficients
$c_{i}=\alpha \bar{u}_{i}+(1-\alpha) l_{i}$
- Solutions in Opt str are characterized in terms of solutions of a lower-bound feasibility problem
associated with LOP.
- Solutions in $O p t_{\text {weak }}$ are characterized in terms of efficient solutions of a bi-objective LOP where each c_{i} has two weights \bar{u}_{i}, l_{i}.
- $O p t_{a d m} \subseteq O p t_{p o s}^{c} \subseteq O p t_{m a r}$
- Moreover,
- If LOP is a linear mixed-integer programming (i.e., \mathcal{X} is in the form of $M x \leq b$ for a matrix M and a vector b), $O p t_{a d m}=O p t_{p o s}^{c}$ and in general $O p t_{\text {pos }}^{c} \subset O p t_{\text {max }}$
- If LOP is convex (i.e., \mathcal{X} is convex) or combinatorial ($\left(i . e, \mathcal{X} \subseteq\{0,1\}^{n}\right)$,
$O p t_{a d m}=O p t_{\text {pos }}^{\mathcal{C}}=O p t_{\text {max }}$.

Important consequences

- Finding non-dominated solutions amounts to solving the deterministic version or well-known variants of the problem. Hence, fast existing methods can be applied.
As α varies from 0 to 1, solutions in $O p t_{h u}^{\alpha}$ can be found at once by using method from parametric optimizations such as parametric simplex method.
- In general, checking E-admissibility is costly. But thanks to the link with $O p t_{\text {pos }}^{\mathcal{C}}$ it implies that:
- In the case of linear programming (number of acts is infinite), checking E-admissibility is fast by just using simplex algorithms.
In the case of combinatorial optimization problem (number of acts is finite but extremely huge), if the deterministic problem can be solved efficiently (e.g., the shortest path problem) chec
- Open problem: \exists an instance of LOP such that $O p t_{a d m} \subset O p t_{\text {pos }}^{\mathcal{C}}$?

