Optimization Problems with Evidential Linear Objective

Sohaib Afifi Eric Lefèvre Frédéric Pichon Tuan-Anh Vu

UNIVERSITÉ D'ARTOIS

LGI2A, Artois university

Context

This work is centered around an optimization problem with a linear objective (LOP):

$$\max \ c^T x$$

s.t. $x \in \mathcal{X} \subseteq \mathbb{Z}_{\geq 0}^{n_1} \times \mathbb{R}_{\geq 0}^{n_2}$ with $n_1 + n_2 = n.$ (LOP)

• In real life, coefficients c_i in LOP are usually uncertain.

• Uncertainty can be represented by discrete scenario sets (e.g., $\{c_1, c_2\}$) or by intervals:

Expected values of solutions

GI2A

• Each $x \in \mathcal{X}$ can be viewed as an act $x : \Omega \to \mathbb{R}$ such that $x(c) = \sum_{i=1}^{n} x_i c_i$. • The upper expected value $\overline{E}_m(x)$ and lower expected value $\underline{E}_m(x)$ of x, relative to m, are defined as:

$$\overline{E}_m(x) := \sup_{P \in \mathcal{P}(m)} E_P(x), \quad \underline{E}_m(x) := \inf_{P \in \mathcal{P}(m)} E_P(x).$$

It can be shown that

$$\overline{E}(x) = \sum_{i=1}^{n} \overline{u}_i x_i, \ \underline{E}(x) = \sum_{i=1}^{n} \overline{l}_i x_i,$$

with
$$\bar{u}_i := \sum_{r=1}^K m(F_r) u_i^r$$
 and $\bar{l}_i := \sum_{r=1}^K m(F_r) l_i^r$, $i = 1, ..., n$

Possibly optimal solutions

- This notion appears in many works in minimax regret optimizations with interval data.
- x is a possibly optimal solution of LOP with respect to the set $\mathcal{C} := \times_{i=1}^{n} [\bar{l}_i, \bar{u}_i]$ if x is an optimal solution for at least one c in C.

U G

Figure: Discrete scenario representation

Figure: Interval representation

Our focus

- We investigate the case where the uncertainty on the coefficients c_i of c is evidential, i.e., modelled by a belief function.
- We consider the case where focal sets of the belief function are Cartesian product of compact sets, with each compact set describing possible values of each coefficient.
- Such a belief function is a direct and natural generalization of the interval representation found in robust optimization.

• Let $Opt_{pos}^{\mathcal{C}}$ be the set of all possibly optimal solutions.

Comparing solutions

• With criteria in decision making under uncertainty, we can compare solutions as:

• Generalized Hurwicz: $x \succeq_{hu}^{\alpha} y$ if

 $\alpha \overline{E}_m(x) + (1 - \alpha) \underline{E}_m(x) \ge \alpha \overline{E}_m(y) + (1 - \alpha) \underline{E}_m(y),$

for some fixed $\alpha \in [0, 1]$. • Strong dominance: $x \succeq_{str} y$ if

 $\underline{E}_m(x) \ge \overline{E}_m(y).$

• Weak dominance: $x \succeq_{weak} y$ if

 $\overline{E}_m(x) \geq \overline{E}_m(y)$ and $\underline{E}_m(x) \geq \underline{E}_m(y)$.

• Maximality: $f \succeq_{max} g$ if

 $\underline{E}_m(x-y) \ge 0 \Leftrightarrow \forall P \in \mathcal{P}(m), E_P(x) \ge E_P(y).$

• E-admissibility: x is E-admissible if $\exists P \in \mathcal{P}(m)$ such that $E_P(x) \ge E_P(y) \quad \forall y$.

Best solutions definitions

For \succeq_{cr} in $\{\succeq_{hu}^{\alpha}, \succeq_{str}, \succeq_{weak}, \succeq_{max}, \succeq_{adm}\}$, the set of non-dominated (best) solutions:

 $Opt_{cr} = \{x : \nexists y \text{ such that } y \succ_{cr} x\}.$

Results

We characterize non-dominated solutions by established concepts in optimization.

Belief Function Theory

- A frame Ω (closed subset of \mathbb{R}^n) contains all possible values of a variable of interest $\omega.$
- We would like to quantify the uncertainty about statements like "the subset A of Ω contains the true value of ω ".
- It can be represented by a mapping $m : \mathcal{C} \mapsto [0, 1]$ called mass function, where \mathcal{C} is assumed here to be a finite collection of closed subsets of Ω , such that:

$$\sum_{A\in\mathcal{C}}m(A)=1 \text{ and } m(\emptyset)=0$$

• $A \subseteq \Omega$ is called focal set if m(A) > 0. The set of all focal sets of m is denoted by \mathcal{F} . • m induces a belief function Bel and a plausibility function Pl defined on $\mathcal{B}(\Omega)$ the Borel subsets of Ω :

$$Bel(A) = \sum_{B \in \mathcal{F}: B \subseteq A} m(B), \quad Pl(A) = \sum_{B \in \mathcal{F}: B \cap A \neq \emptyset} m(B).$$

- For any LOP,
- Solutions in Opt^{α}_{hu} are characterized in terms of optimal solutions of LOP with coefficients $c_i = \alpha \bar{u}_i + (1 - \alpha)l_i.$
- Solutions in *Opt_{str}* are characterized in terms of solutions of a *lower-bound feasibility problem* associated with LOP.
- Solutions in Opt_{weak} are characterized in terms of *efficient* solutions of a bi-objective LOP, where each c_i has two weights \bar{u}_i, \bar{l}_i .
- $Opt_{adm} \subseteq Opt_{pos}^{\mathcal{C}} \subseteq Opt_{max}$.

Moreover,

- If LOP is a linear mixed-integer programming (i.e., \mathcal{X} is in the form of $Mx \leq b$ for a matrix Mand a vector b), $Opt_{adm} = Opt_{pos}^{\mathcal{C}}$ and in general $Opt_{pos}^{\mathcal{C}} \subset Opt_{max}$. If LOP is convex (*i.e.*, \mathcal{X} is convex) or combinatorial (*i.e.*, $\mathcal{X} \subseteq \{0,1\}^n$),
- $Opt_{adm} = Opt_{pos}^{\mathcal{C}} = Opt_{max}.$

Important consequences

- Finding non-dominated solutions amounts to solving the deterministic version or well-known variants of the problem. Hence, fast existing methods can be applied.
- As α varies from 0 to 1, solutions in Opt_{hu}^{α} can be found at once by using method from parametric optimizations such as parametric simplex method.
- In general, checking E-admissibility is costly. But thanks to the link with $Opt_{pos}^{\mathcal{C}}$, it implies that:
- In the case of linear programming (number of acts is infinite), checking E-admissibility is fast by just using simplex algorithms.
- In the case of combinatorial optimization problem (number of acts is finite but extremely huge), if the deterministic problem can be solved efficiently (e.g., the shortest path problem), checking E-admissibility is also efficient.
- Open problem: \exists an instance of LOP such that $Opt_{adm} \subset Opt_{pos}^{\mathcal{C}}$?

• A probability measure P on $\mathcal{B}(\Omega)$ is compatible with m if $Bel(A) \leq P(A) \ \forall A \in \mathcal{B}(\Omega)$. Let $\mathcal{P}(m)$ be set of all compatible probability measures.

Evidential coefficients in the objective

- Let Ω_i be the set of possible values for c_i and let $\Omega := \times_{i=1}^n \Omega_i$. Each $c \in \Omega$ is called a scenario.
- A mass function m on Ω , with set of focal sets $\mathcal{F} = \{F_1, \ldots, F_K\}$, represents uncertainty about the coefficients.
- We assume that each focal set is a Cartesian product of compact sets, i.e., $F_r = \times_{i=1}^n F_r^{\downarrow i}, \ \forall r \in \{1, \dots, K\}.$
- The minimum and maximum values of $F_r^{\downarrow i}$ are denoted by l_i^r and u_i^r , respectively.

ISIPTA 2023, Oviedo, Spain

{tanh.vu, firstname.lastname}@univ-artois.fr